Phase-space noncommutative formulation of Ozawa’s uncertainty principle

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representation of Noncommutative Phase Space

The representations of the algebra of coordinates and momenta of noncommutative phase space are given. We study, as an example, the harmonic oscillator in noncommutative space of any dimension. Finally the map of Schödinger equation from noncommutative space to commutative space is obtained. PACS number: 03.65Bz, 11.90.+t

متن کامل

Singlet scalar dark matter in noncommutative space

In this paper, we examine the singlet scalar dark matter annihilation to becoming the Standard Model particles in the non-commutative space. In the recent decades, many candidates of dark matter have been offered,  but our information about  the nature of dark matter is still limited. There are such particle candidates as  scalar matetr, fermion, boson, gauge boson, etc.; however, they have nei...

متن کامل

Space-time Uncertainty Principle from Breakdown of Topological Symmetry

Starting from topological quantum field theory, we derive space-time uncertainty relation with respect to the time interval and the spatial length proposed by Yoneya through breakdown of topological symmetry in the large N matrix model. This work suggests that the topological symmetry might be an underlying higher symmetry behind the space-time uncertainty principle of string theory. 1 E-mail a...

متن کامل

Noncommutative Uncertainty Principles

Abstract The classical uncertainty principles deal with functions on abelian groups. In this paper, we discuss the uncertainty principles for finite index subfactors which include the cases for finite groups and finite dimensional Kac algebras. We prove the Hausdorff-Young inequality, Young’s inequality, the Hirschman-Beckner uncertainty principle, the Donoho-Stark uncertainty principle. We cha...

متن کامل

Non-commutative space-time and the uncertainty principle

The full algebra of relativistic quantum mechanics (Lorentz plus Heisenberg) is unstable. Stabilization by deformation leads to a new deformation parameter εl, l being a length and ε a ± sign. The implications of the deformed algebras for the uncertainty principle and the density of states are worked out and compared with the results of past analysis following from gravity and string theory. PA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review D

سال: 2014

ISSN: 1550-7998,1550-2368

DOI: 10.1103/physrevd.90.045023